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Abstract { Ash problems in coal-¯red power plants result
in decreases in e±ciency, unscheduled outages, equipment
failures, and cleaning. Assessing the potential impact of ash
on power plant performance is extremely complex and di±cult
due to coal variability, the complexity of the ash behavior
processes involved, and changing operating conditions. To
predict the impact of ash on power plant performance, the
impurities and mineral contents of coal have to be determined.
Current coal quality evaluation methods are either ine±cient
or very expensive and time consuming. This paper develops a
neural network which quickly determines the impurities and
ash forming species in coal. The results are compared with
those from computer-controlled scanning electron microscopy
(CCSEM) methods. The developed model shows promise and
has the potential to save coal-¯red utilities millions of dollars
in dealing with various coal ash problems.
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1. Introduction

The cost of ash related problems at coal-¯red power plants in
the United States is signi¯cant. The ash issues are aggravated
because the coal-¯red power industry in the United States is
faced with major changes in coal quality due to environmental
regulations and economic constraints.

The impacts of ash on the overall performance of coal-¯red
combustion and gasi¯cation power plants may include ¯reside
ash deposition, corrosion and erosion of boiler parts, slag
°ow maintenance, and production of ¯ne particulates that
are di±cult to collect [1]. Ash deposits on ¯reside heat
exchange surfaces of power plants signi¯cantly decrease plant
e±ciency and are aggravated by variability in coal quality
(chemical and physical characteristics of inorganic materials),
system operating conditions, and system design. These
deposits require soot blowing and load shedding for removal,
both of which decrease plant e±ciency and availability. Ash
accumulations on heat transfer surfaces also require annual or
semi-annual shutdowns for cleaning which results in cleaning
costs and more lost revenues from being o®-line. Another
major issue impacting wet-bottom boilers, cyclone-¯red
boilers, and entrained gasi¯ers, is maintaining slag °ow.
In some systems maintaining slog °ow requires co¯ring of

other expensive fuels such as oil or adding °uxing agents
and in some cases outages to remove frozen slag resulting in
decreased e±ciency and availability.

E®ective management of ash behavior in coal-¯red systems is
extremely di±cult because of the high variability and complex
associations of the inorganic components (ash-forming con-
stituents) in coal. The association and abundance of major,
minor and trace-inorganic elements in coal is dependent upon
coal rank and depositional environment.

Upon combustion, the inorganic components associated with
coal are transformed to inorganic vapors, liquids and solids
in the °ame. The degree to which these transformations
occur depends upon the characteristics of the conversion
system and coal properties. The vapors, liquids, and solids
are transported with the bulk gas °ow through the system.
During gas cooling, the vapors condense to form sub-micron
particles on the surfaces of entrained ash particles and the
liquid phases solidify to form solid particles. The state of the
inorganic substances in the combustion system will dictate
if it will end up in molten slag in wet bottom systems or
entrained in the bulk gas °ow. Partitioning of ash between
slag, deposits, and entrained ash (°y ash) is extremely
important in understanding the potential e®ects a coal
may have on boiler performance [2]. Much work has been
performed to determine the abundance and composition of
vapor phase species as well as the size and composition of
liquid and solid particles in coal [3].

Many of the above problems associated with coal ash are due
to unforeseen excursions in the abundance of the ash-forming
species in coal. The detrimental e®ects of inorganic species
can be minimized through the use of an e®ective method to
select, blend and forecast fuel quality. Currently, bulk coal
analysis is performed and used by coal-¯red power industry to
determine the ash-forming species in the coal and to predict
the ash behavior. This prediction, however, is severely limited
because of the inadequacy of bulk coal analysis methods to
determine the exact chemical and physical characteristics
of the inorganic components in the coal . Improvements in
determining the ash producing impurities and predicting
ash behavior have been made through the use of computer-
controlled scanning electron microscopy (CCSEM). Detailed
CCSEM techniques determine the size, composition, and
abundance of minerals in coal [4, 5]. CCSEM results are used
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to forecast the deposition tendency and slagging behavior of
ash under various operating conditions of utility boilers by
computing a set of performance indices. However, CCSEM
based methods are rather time consuming. Thus, assessment
techniques that can produce results similar to those from
CCSEM methods and yet are inexpensive and e±cient are
highly desirable and sought by utility industry.

Arti¯cial neural networks (ANNs) have been used in various
segments of industry to solve several problems [6]. For
example, ANN have been used to detect and locate faults
on power system transmission and distribution lines [7] and
to identify and eliminate bad data that are telemetered to
the energy control centers of the electric utilities [8]. For a
partial list of ANN applications in electric power industry
the reader is referred to [9]. To a limited degree, feed-forward
backpropagation ANNs have also been used to predict ash
behavior in power plants. There are several publications on
this subject and the results show promise [10-12]. However,
an ANN system speci¯cally designed for predicting the
CCSEM based analysis results has not been developed to
predict the quality of coal.

This paper describes an ANN which takes the utility based
bulk coal/ash analysis results and accurately and quickly
determines detailed CCSEM type of results. The developed
ANN can be integrated with other ash analysis programs
to quickly compute the boiler performance indices. Using
this integrated system, the analysis will be fast and inex-
pensive. Thus the developed ANN has the potential to
save the coal-¯red utility industry millions of dollars and
aid in the development of advance power systems through
matching fuel quality to power plant design and optimization
of operating conditions in order to minimize ash-related
problems. ANNs can be used to forecast ash problems based
on coal shipments allowing operations sta® to change op-
erating conditions and coal blends to alleviate those problems.

The second section of the paper describes the structure and
other details of the developed neural net. The third section
presents a practical test case. The ¯nal section gives some
concluding remarks.

2. Approach

In order to make the presentation of the developed ANN more
meaningful, a brief description of neural network concepts is
in order.

2.1 Arti¯cial Neural Networks

ANNs represent a set of new and advanced information and
data processing systems. They provide a means to perform
tasks such as pattern matching and classi¯cation, linear and
multidimensional nonlinear function approximation, complex
optimization, vector quantization, and data clustering, while
traditional computer techniques are ine±cient at most of
these tasks. However, conventional computers are faster

in algorithmic computational tasks and precise arithmetic
operations.

ANNs are generally formed by interconnecting a number of
simulated neurons in a similar way that natural neurons of
human brain are connected. The main objective of the ANN
technology is to mimic the brains approach to processing
data and information. Speci¯cally, an ANN consists of a
large number of simple processing elements called neurons,
units, cells, or nodes. Each neuron is connected to other
neurons by means of directed communication links, each
with an associated weight or strength. The weights represent
information being used by the net to solve a problem. These
weights are determined and ¯xed during the learning or
training stage of the network. To train a neural net, a number
of examples of a particular problem are given (shown) to the
net. The net learns and makes adjustments to its weights
from these examples in much the same way that people
learn through experimentation and interaction with their
environment.

Models of ANNs are speci¯ed by three basic entities: models
of the neurons themselves, models of the interconnection
links among neurons, and the training or learning rules for
determining the connecting weights.

Each of the neurons of a net is characterized by what is
known as its activation function. The activation, which is a
function of the inputs the neuron receives, determines the
internal state or the activity level of the neuron. Typically,
a neuron sends its activity level as a signal to other neurons
connected to it. Figure 1 shows the mathematical model of
a neuron known as the McCulloch and Pitts neuron. In this
model, the ith neuron computes a weighted sum of its inputs
and produces an output signal (¯ring) or a zero (not ¯ring)
according to whether this weighted input sum is above or
below a certain threshold µi :

fi =

mX

j=1

WijXj(t)¡ µi (1)

Yi(t + 1) = A(fi) (2)

where the activation function A(fi) could be any of the so
called sigmoid functions.

Figure 1: Diagram of a typical neuron
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A popular activation function is known as the logistic sigmoid
function (an S-shaped curve) and is de¯ned by:

A(f) =
1

1 + exp(¡f¸)
(3)

where f is de¯ned as in Equation (1) and ¸ determines the
steepness of the activation function. Figure 2 shows a typical
sigmoid function for various values of ¸. The choice of ¸
depends on the problem and the data being analyzed.

Figure 2: A typical logistic sigmoid function

Depending on the way that neurons are organized and the
connection geometry among them, there are several structures
(or architectures) of ANNs. One of these structures, known as
the feed-forward ANN, is designed such that a layer of input
neurons is connected to one or more layers of neurons called
hidden layers. The hidden layers are then interconnected to
the next layer of neurons called the output layer of the net.
These interconnected input, hidden, and output layers now
form a multilayer feed-forward neural network. The input
layer typically performs no function other than bu®ering of
the input signal. The outputs of the net are generated from
the output layer. A net is said to be fully connected if every
output from one layer is connected to every neuron in the
next layer. A fully connected multilayer feed-forward ANN is
generally called a multilayer perceptron (MLP). A MLP with
two hidden layers of neurons is shown in Figure 3.

One of the most critical and important factors in the design of
ANNs is their training. In general, there are three categories
of ANN training or learning methods: supervised learning,
reinforcement learning, and unsupervised learning. Experi-
ence and tests indicate that supervised learning is the most
suitable method of training for the network of this project. In
a supervised training method, the designed net is presented
with several input-output pairs of examples. Each time an
input is presented, the net produces an output. The produced
output is then compared with the corresponding desired
output. If there is a discrepancy, the net computes the error
and makes corrections to the weights of the links connecting

the neurons together. When the entire set of the input-output
training pairs are presented, the net randomly reshu²es the
pairs and then starts over again at the beginning of the reor-
ganized training set. This training process is repeated several
hundreds, thousands, or more times until the output errors
become small and the net outputs are within a user-speci¯ed
tolerance level for all the input-output training pairs. One
of the well-known methods that is used to minimize the
output errors of the net during its training is the backprop-
agation technique. Depending on the computer speed, the
training process can be very slow and may take up to several
hours, days, or even weeks to complete. Details about the
training issues are discussed elsewhere in the ANNs literature.

Figure 3: A multilayer perceptron

Once a net is successfully trained and tested (i.e., the net
produces answers that are within the user-speci¯ed tolerance),
the user may wish to reduce the error tolerance and continue
training the net in order to achieve a higher level of accuracy
in the predictions of the net. The ultimate accuracy of the
net predictions, however, highly depends on the accuracy of
the input-output training pairs. Furthermore, an over trained
NN memorizes its training sets and thus will not be able to
generalized and produce accurate outputs to the inputs it has
not seen before.

2.2 Designed Neural Network

Several multilayer perceptron architectures with various num-
bers of hidden layers and hidden processing elements (PEs)
were developed and tested for this project. The number of
input and output PEs was determined and ¯xed by the size of
each input (bulk ash) and output (CCSEM) samples provided
by a utility. The size of each bulk ash sample was 10 and the
size of each of the corresponding desired CCSEM samples was
18. Tables 1 and 2 list the input bulk ash components and the
corresponding desired CCSEM output results. Given the bulk
ash analysis results, the neural net should be able to predict
the CCSEM results that are critical in predicting ash behavior.

After several trails, the required ANN was designed as shown
in Figure 4. This ANN has 32 neurons (PEs) and 112 synapse
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Table 1: Typical Weight Percent of Input
Bulk Ash on a Mineral Basis

Mineral % Weight

%Ash (dry basis) 6.95
Na2O 1.21
MgO 7.4

Al2O3 23.88
SiO2 47.29

P2O5 0.97
K2O 0.41
CaO 15.46
TiO2 1.18
Fe2O3 2.2

Table 2: Typical Weight Percent of Desired CCSEM
Output Results on a Mineral Basis

%Weight
Mineral 1.0 - 4.6 4.6 - 22.0 22.0 - 46.0 46.0 - 100.0

Quartz 8.8 10.3 3.7 1.0
Kaolinite 25.9 24.2 1.0

Montmorillonite 0.9 0.4 0.0

K Al-Silicate 2.5 1.5 0.0
Pyrite 2.9

Total 47.2 49.3 3.5

connections (weights). The best value of these weights were
determined by training the net a number of times.

Figure 4: Designed ANN for CCSEM Prediction

To train the net, an enhanced variant of back propagation
technique known as the momentum learning method was
used for both the hidden and the output layers. The value of
each of the parameters of the learning rule were determined
by several trail and error e®orts as there are no fast and

deterministic rules available for this. These parameters highly
depend on the data to be analyzed and require some degree
of experience and insight into the problem to be solved. The
value of the design parameters determined for this work are
summarized in Tables 3 and 4.

Table 3: Design Parameters

Layer Learning Method PE
Nonlinearity

Hidden Momentum Sigmoid
Output Momentum Sigmoid

Table 4: Learning Parameters

Layer Step Size Momentum
(Learning Rate) Rate

Hidden 0.5 0.7
Output 0.08 0.7

The net was trained in a batch mode for ¯fty (50) times each
with 10,000 epochs. The output results are discussed next.

3. Results

A total of 200 input/output sample pairs of bulk ash and
CCSEM results were used to train the network. Out of these
200 samples, 11 were used for cross validation, 2 were used
for testing purposes, and the remaining 187 were used to
actually train the network. After training, the net was tested
a couple of times. One of the test results is reported here.
The values in Tables 1 and 2 were not included in the training
set. Instead, they were used to test the network. The actual
test results (the results predicted by the network) are shown
in Table 5.

Table 5: Weight Percent of Actual CCSEM Output
Results on a Mineral Basis

%Weight
Mineral 1.0 - 4.6 4.6 - 22.0 22.0 - 46.0 46.0 - 100.0

Quartz 8.7 10.2 3.8 1.4
Kaolinite 15.6 19.6 2.2

Montmorillonite 3.3 3.2 0.9
K Al-Silicate 1.6 1.7 0.9

Pyrite 3.0
Total 48.3 48.4 6.8

A Comparison of the values in Table 2 and Table 5 indicates
a close match between the majority of what is desired and
what is actually predicted by the net. The variations in some
of the results are somewhat statistically insigni¯cant and it
is expected that with additional samples and more training
the discrepancies will become even smaller and eventually
disappear.
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4. Conclusions

A neural network model has been developed that determines
the impurities and ash-forming species in coal. Results from
the model can be used and further analyzed to accurately
select, blend, and forecast fuel quality in power plants. Com-
pared to conventional techniques, the method of this paper is
quick, e±cient, and economical. It can save utilities millions
of dollars in their costs dealing with various coal ash problems.
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